



### Pump Laser Modules

## **Key**Features

Operating power up to 750mW

Operating temperature range: -5 to 75°C

Total Power Consumption: 8W max @750mW Pop

Telcordia GR-468 CORE Qualified

RoHs 6/6

## **Applications**

High output power Low noise Erbium-doped Fiber Amplifier

CATV

Sensors

Wavelength Conversion

#### For moreInfo

Please contact us at: North America: **514.748.4848 888.922.1044** Europe & Asia: **+33 (0) 1 69 80 58 33** or via e-mail at **sales@3spgroup.com** 

# 1999 HPP

#### 825mW Kink-Free, FBG Stabilized 980 nm Pump Laser Module

The 1999 HPP is a new generation of 980nm terrestrial pump modules powered by in-house chip technology fully qualified for submarine applications, ensuring an outstanding level of performance, power consumption and reliability.

Low Profile, 14-pin butterfly modules are available with an operating power up to 750mW. The wavelength is "locked" utilizing a fiber bragg grating (FBG) located in either a single mode Polarization Maintaining Fiber (PMF) or a Single Mode HI1060 Fiber (SMF) pigtail. The module meets the Telcordia<sup>TM</sup> GR-468-Core requirements for hermetic 980nm pump modules.

These modules provide excellent stability and wide dynamic range due to their specific design.





**1999 HPP** 825mW Kink-Free, FBG Stabilized 980 nm Pump Laser Module

Pump Laser **3SP**Group





# ELECTRO-OPTICAL CHARACTERISTICS

The following parameters are specified BOL for TLD= 25°C, Tcase= -5 to 75°C, Pop= Pnom, unless otherwise stated.

| Parameters                          | Conditions                                          | Symbol                            | Min              | Тур  | Max  | Unit  |
|-------------------------------------|-----------------------------------------------------|-----------------------------------|------------------|------|------|-------|
| PUMP LASER                          |                                                     |                                   |                  |      |      |       |
| Threshold current                   |                                                     | 1                                 | _                | 60   | 80   | mΔ    |
| Note 1                              |                                                     | <sup>1</sup> th                   |                  | 00   |      | шл    |
| Nominal operating power             |                                                     | P <sub>nom</sub>                  | 450              | 600  | 750  | mW    |
| Kink free power                     |                                                     | P                                 | 1.1 x            | -    | -    | mW    |
| Note 2                              |                                                     | • KINK                            | P <sub>nom</sub> |      |      |       |
|                                     | $P_{nom} = 450 \text{mW}$                           |                                   |                  | 765  | 835  |       |
|                                     | $P_{nom} = 500 \text{mW}$                           |                                   |                  | 040  | 920  |       |
| Forward current @ P Note 3          | P = 600 mW                                          |                                   | -                | 1005 | 1005 | mA    |
| Note 5                              | P = 680 mW                                          | nom                               |                  | 1100 | 1120 |       |
|                                     | $P_{nom} = 720 \text{mW}$                           |                                   |                  | 1110 | 1120 |       |
|                                     | $P_{nom} = 750 \text{mW}$                           |                                   |                  | 1140 | 1150 |       |
| Forward voltage                     | @750mW                                              | V <sub>nom</sub>                  | -                | 1.9  | 2.2  | V     |
|                                     | (a) $T_{case} = T_{FBG} = 25^{\circ}C$              | • • •                             |                  |      |      |       |
| Peak wavelength tolerance           | 0.1x P <sub>nom</sub> to P <sub>nom</sub>           | Δλ <sub>p</sub>                   |                  | -    | ±0.5 | nm    |
| Wavelength tuning vs temperature    | 0.1x P to P                                         | Δλ / ΔΤ                           | -                | 0.01 | 0.02 | nm/°C |
| (T <sub>grating</sub> = -5 to 75°C) | U.I.X I nom to I nom                                |                                   |                  | 0.01 | 0.02 |       |
| Spectral width @-3dB                | 0.1x P <sub>nom</sub> to P <sub>nom</sub>           | $\Delta\lambda_{FWHM}$            | -                | 0.6  | 1.0  | nm    |
|                                     | Peak-to-peak                                        |                                   |                  |      |      |       |
|                                     | 10Hz-50kHz,                                         |                                   |                  |      |      |       |
| Optical power stability             | 10-20mW                                             |                                   |                  | 0.4  | 0.6  |       |
|                                     | 20-50mW                                             |                                   |                  | 0.3  | 0.4  | dB    |
|                                     | >50mW                                               |                                   |                  | 0.15 | 0.2  |       |
| MONITOR DIODE                       |                                                     |                                   |                  |      |      |       |
| Responsivity                        |                                                     | dI <sub>BFM</sub> / dP            | 0.5              | -    | 10   | mA    |
| Dark current                        | Vr= 5V                                              | I <sub>BFM_dark</sub>             | -                | 50   | 100  | nA    |
| THERMO-ELECTRICAL COOLER            |                                                     |                                   |                  |      |      |       |
| Cooling capacity                    |                                                     | $\Delta T_{TEC}$                  | 50               | -    | -    | °C    |
| TEC voltage (EOL)                   | T <sub>case</sub> = 75°C,<br>1.1 x I <sub>nom</sub> | $V_{\text{tec, eol}}$             | -                | -    | 3.3  | V     |
| TEC current (EOL)                   |                                                     | I <sub>tec</sub> , <sub>eol</sub> | -                | -    | 1.5  | А     |
| TEC Power consumption               |                                                     | P <sub>TEC</sub>                  | -                | -    | 4.95 | W     |
| THERMISTOR                          |                                                     |                                   |                  |      |      |       |
| Resistance                          | 25°C                                                | R <sub>th</sub>                   | 9.5              | 10   | 10.5 | kΩ    |
| Constant                            |                                                     | В                                 | 3600             | -    | 4200 | K     |

(1): Ith is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 and 50mW

(2): A kink is detected when the local slope, dP/dI, is below Smin or above Smax Smin is defined as 0.5 x Savg and Smax is defined as 1.5 x Savg Savg is the slope of a linear fit of the P(I) curve between 50 and 150mW

(3): EOL forward current I(EOL)= 1.1x I(BOL)



**1999 HPP** 825mW Kink-Free, FBG Stabilized 980 nm **Pump Laser Module** 

Pump Laser **3SP**Group





#### ABSOLUTE MAXIMUM RATINGS

Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

| Parameter Conditions                     | Symbol                 | Min | Max  | Unit |
|------------------------------------------|------------------------|-----|------|------|
| Storage temperature (2000h)              | T                      | -40 | 85   | °C   |
| Operating temperature (Tsubmount = 25°C) | T                      | -20 | 75   | °C   |
| Lead soldering temperature (10s maximum) |                        | -   | 280  | °C   |
| LD forward drive current                 | f_max                  | -   | 1300 | mA   |
| LD reverse voltage                       | V                      | -   | 2    | V    |
| PD reverse voltage                       | V <sub>PD_max</sub>    | -   | 15   | V    |
| PD forward current                       | P0_max                 | -   | 10   | mA   |
| TEC voltage                              | V <sub>TEC,C,Max</sub> | -   | 4.2  | V    |
| TEC current                              | TEC. C. max            | -   | 2.0  | А    |
| ESD* damage                              | V                      | -   | 1000 | V    |
| Mounting torque                          |                        | -   | 150  | mN.m |
| Fiber bend radius                        |                        | 25  | -    | mm   |
| Axial pull force (1x 1min)               |                        | -   | 5    | N    |

\* Human Body model, C= 100pF, R=  $1.5 \Omega$ 

#### **FIBER PIGTAIL CHARACTERISTICS**

| Parameter                     | Note                              | Min                                                   | Тур | Max | Unit |
|-------------------------------|-----------------------------------|-------------------------------------------------------|-----|-----|------|
| Fiber type                    |                                   | SM98-PS-U25A-H or equivalent<br>HI1060™ or equivalent |     |     |      |
| Coating diameter              | (except along grating)            | 230                                                   | 250 | 270 | μm   |
| FBG recoat diameter           |                                   | -                                                     | -   | 400 | μm   |
| FBG position                  | Module to center of FBG           | -                                                     | 2.0 | -   | m    |
| Loose tube buffer<br>diameter |                                   | 885                                                   | -   | 915 | μm   |
| Fiber prove test level        |                                   | 200                                                   | -   | -   | kpsi |
| Grating proof test<br>level   |                                   | 150                                                   | -   | -   | kpsi |
| Pigtail termination           | Bare fiber                        |                                                       |     |     |      |
| Polarization State            | Aligned parallel to the slow axis |                                                       |     |     |      |



**1999 HPP** 825mW Kink-Free, FBG Stabilized 980 nm **Pump Laser Module** 







#### MECHANICAL DETAILS

Dimensions are in mm.



#### PIN ASSIGNEMENT

| N° | Description        |
|----|--------------------|
| 1  | Cooler anode       |
| 2  | Thermistor         |
| 3  | Monitor PD Anode   |
| 4  | Monitor PD Cathode |
| 5  | Thermistor         |
| 6  | No connect         |
| 7  | No connect         |
| 8  | No connect         |
| 9  | No connect         |
| 10 | Laser Anode (+)    |
| 11 | Laser Cathode (-)  |
| 12 | No connect         |
| 13 | Case               |
| 14 | Cooler cathode     |

**1999 HPP** 825mW Kink-Free, FBG Stabilized 980 nm Pump Laser Module







#### LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

#### HANDLING

This product is sensitive to modules. Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the product may cause permanent damage to the device.



## ORDERING INFORMATION

1999HPP pump product family - other wavelengths are available upon request.

| SMF pigtail<br>Nominal Power | λ <sub>p</sub> =974.5nm<br>Part Number | λ <sub>p</sub> =976.0nm<br>Part Number | PMF pigtail<br>Nominal Power | λ <sub>p</sub> =974.5nm<br>Part Number | λ <sub>p</sub> =976.0nm<br>Part Number |
|------------------------------|----------------------------------------|----------------------------------------|------------------------------|----------------------------------------|----------------------------------------|
| 450mW                        | 3CN01489DL                             | 3CN01490DL                             | 450mW                        | 3CN01491DL                             | 3CN01492DL                             |
| 500mW                        | 3CN01489EA                             | 3CN01490EA                             | 500mW                        | 3CN01491EA                             | 3CN01492EA                             |
| 550mW                        | 3CN01489EL                             | 3CN01490EL                             | 550mW                        | 3CN01491EL                             | 3CN01492EL                             |
| 600mW                        | 3CN01489FA                             | 3CN01490FA                             | 600mW                        | 3CN01491FA                             | 3CN01492FA                             |
| 680mW                        | 3CN01489FS                             | 3CN01490FS                             | 680mW                        | 3CN01491FS                             | 3CN01492FS                             |
| 720mW                        | 3CN01489GE                             | 3CN01490GE                             | 720mW                        | 3CN01491GE                             | 3CN01492GE                             |
| 750mW                        | 3CN01489GL                             | 3CN01490GL                             | 750mW                        | 3CN01491GL                             | 3CN01492GL                             |

Revised March 2013

Please കാലം സ്പ്രന്നങ്ങന്നെ പ്രത്യാന് പ്രവേശങ്ങള് പ്രവേശന്നെ പ്രവേശന്നം പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നം പ്രവേശന്നം പ്രവേശന്നെ പ്രവേശന്നം പ്രവേശന്നം പ്രവേശന്നം പ്രവേശന്നെ പ്രവേശന പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നെ പ്രവേശന്നം പ

ORDERENGIONFED

Pleastessmaontact yours and algerags of the set algorithm and algorithm of the new state of the set of the se

3SP3ppcPoup NorthoAmAria2ri2145742444848 88888829202244044 Europpedatei234834(931(691805805833 www.wwp.9599496497com<sup>2</sup>05868389959496497com





