

Pump Laser Modules

KeyFeatures

Epoxy free design inside the mini-DIL module for long term Reliability

300mW operating power

Operating temperature up to 75°C

Fiber Bragg Grating (FBG)on PM single mode fiber

Telcordia GR-468-CORE qualification on-going

RoHS 6/6

Applications

Compact size, low noise Erbium-Doped Fiber Amplifiers requiring low power consumption

Multi pumping architectures

Sensors

For moreInfo

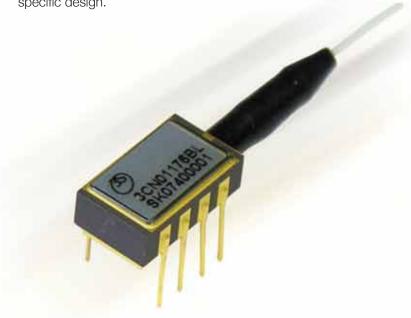
Please contact us at:

North America: 514.748.4848

888.922.1044

Europe & Asia: +33 (0) 1 69 80 58 33 or via e-mail at sales@3spgroup.com

1999 PLU


330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module

The 1999 PLU is a new pump product family specifically designed for applications where a compact size and low power consumption are required. Modules feature a mini-DIL package incorporating a new laser chip internally developed for uncooled operation over a wide temperature range from –5°C to 75°C; chip is fully qualified exceeding Telcordia recommendations.

Available kink-free power exceeds 330mW.

The wavelength is "locked" utilizing a Fiber Bragg Grating (FBG) located in a single mode polarization maintaining fiber (PMF) pigtail.

These modules provide excellent stability and very wide dynamic range due to their specific design.

1999 PLU

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module

ELECTRO-OPTICAL CHARACTERISTICS

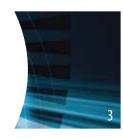
The following parameters are specified BOL for a Tcase = -5°C to 75°C, VBFM= -5V and -50dB max back-reflection unless otherwise stated.

Parameters	Conditions	Symbol	Min	Тур	Max	Unit
PUMP LASER		•				
Threshold current (1)		I _{th}	- 1	-	85	mA
Nominal operating power		P _{nom}	100	-	300	mW
Kink free power (2)		P _{kink}	1.1 x P _{nom}	-	-	mW
Forward current @ P _{nom} (3)	$\begin{array}{l} P_{\text{nom}}{=}~100\text{mW} \\ P_{\text{nom}}{=}~150\text{mW} \\ P_{\text{nom}}{=}~200\text{mW} \\ P_{\text{nom}}{=}~250\text{mW} \\ P_{\text{nom}}{=}~260\text{mW} \\ P_{\text{nom}}{=}~270\text{mW} \\ P_{\text{nom}}{=}~300\text{mW} \end{array}$	I _{nom}	- - - - - -	225 305 385 465 480 495 550	280 380 480 580 600 600	mA
Forward voltage	@from 260 to 300mW @up to 260mW	Vnom	-	1.75 1.75	2.0 2.1	٧
Peak wavelength tolerance	@ T_{case} = T_{FBG} = 25° C $0.1x P_{nom}$ to P_{nom}	Δλρ		-	±0.5	nm
Wavelength tuning vs temperature (T _{grating} = -5 to 75°C)		Δλρ / ΔΤ	-	0.01	0.02	nm/°0
Spectral width @-3dB	0.1x Pnom to Pnom	$\Delta\lambda$ FWHM	-	-	1.0	nm
Power in band (4)	P _{nom}	P_{band}	90	-	-	%
Optical power stability	Peak to peak 10Hz-50kHz Pnom	ΔP_f	-	<2	3.5	%
Power consumption, EOL	$\begin{array}{l} P_{\text{nom}}{=}~100\text{mW} \\ P_{\text{nom}}{=}~150\text{mW} \\ P_{\text{nom}}{=}~200\text{mW} \\ P_{\text{nom}}{=}~250\text{mW} \\ P_{\text{nom}}{=}~260\text{mW} \\ P_{\text{nom}}{=}~270\text{mW} \\ P_{\text{nom}}{=}~300\text{mW} \end{array}$		1	0.35 0.50 0.70 0.90 0.92 0.94 0.96	0.50 0.75 1.00 1.25 1.30 1.35	W
MONITOR DIODE		NA				
Responsivity		I _{BFM} / P	0.5	- 1	10	μA/mV
Dark current	Vr = 5V	I _{BFM_dark}	X	50	100	nA
THERMISTOR	X					/
Resistance	25°C	R _{th}	9.5	10	10.5	kΩ
Constant		В	3600	1	4200	K

⁽¹⁾ Ith is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 and 50mW

⁽²⁾ A kink is detected when the local slope, dP/dl, is below Smin or above Smax.

Smin is defined as 0.5 x Savg and Smax is defined as 1.5 x Savg


Savg is the slope of a linear fit of the P(l) curve between 50 and 150mW.

⁽³⁾ EOL forward current I(EOL)= 1.1x I(BOL)

1999 PLU

330mW Kink-Free, FBG Stabilized, 980nm Uncooled **Pump Laser Module**

Absolute Maximum

Ratings

Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

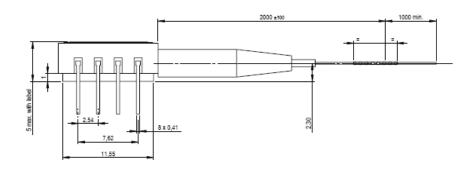
Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000h)	T_{stq}	-40	85	°C
Operating temperature	Top	-5	75	°C
Lead soldering temperature (10s maximum)		-	280	°C
LD forward drive current	I _{f max}		800	mA
LD reverse voltage	V_{r_max}	× • //	2	V
PD reverse voltage	V_{PD_max}	-	15	V
PD forward current	I _{PD max}		10	mA
ESD* damage	V _{ESD}		500	V
Mounting torque			150	mN.m
Fiber bend radius		20	\ \	mm
Axial pull force (1 x 1min)		1 - / -	5	N

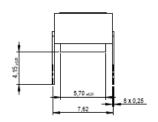
^{*} Human Body Model, C= 100pF, R= 1.5Ω

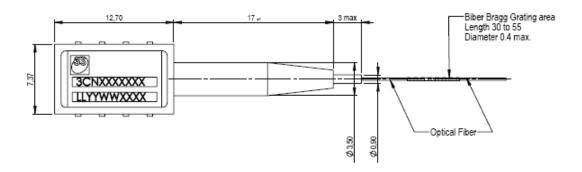
Fiber Pigtail **Characteristics**

Parameters	Note	Min	Тур	Max	Unit
Fiber type		SM98-PS-U25A-H or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		MX-D		400	μm
FBG position	Module to center of FBG		2		m
Loose tube buffer diameter		885		915	μm
Fiber proof test level		200		V	kpsi
Grating proof test level		150	1		kpsi
Pigtail termination	Bare fiber			X	

1999 PLU

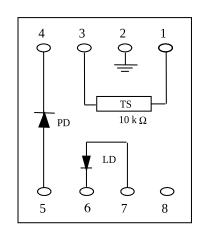

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module





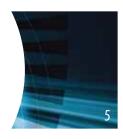
Mechanical **Details**

Dimensions are in mm.



Pin **Assignment**

N°	Description
1	Thermistor
2	Case ground
3	Thermistor
4	Monitor PD Cathode
5	Monitor PD Anode
6	Laser Cathode
7	Laser Anode
8	No connect



1999 PLU

330mW Kink-Free, FBG Stabilized, 980nm Uncooled **Pump Laser Module**

Laser Safety Information

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation.

This product is classified Class 4 Laser Product according to IEC-60825-1.

Handling

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation.

Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the product. Handle the module by its package only, never hold it by its pigtail.

Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

Ordering Information

1999 PLU pump product family — other wavelengths are available upon request.

Nominal Power (mW)	$\lambda_p = 974.5$ nm Part Number	$\lambda_p = 976.0$ nm Part Number	
100	3CN 01176 AA	3CN 01177 AA	
150	3CN 01176 AL	3CN 01177 AA	
17.7	3CN 01176 BA	3CN 01177 BA	
200			
250	3CN 01176 BL	3CN 01177 BL	
260	3CN 01176 BN	3CN 01177 BN	
270	3CN 01176 BQ	3CN 01177 BQ	
300	3CN 01176 CA	3CN 01177 CA	

Revised March 2012

Please note: information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract. Information is subject to change without notice. ©2011 3S PHOTONICS S.A.S

ORDERING INFO

Avensys

Europe and Asia: +33 (0)1 69 80 58 33

www.3spgroup.com • sales@3spgroup.com

North America: 514.748.4848

3SPGroup

888.922.1044

