

Fiber coupled pumping concepts for double-clad fibers

ITF Proprietary and Confidential Information

Outline

- Introduction
- Notch coupling
- Side-coupling
- End-coupling
- Examples
- Reliability
- Conclusion

Double-Clad Fiber Lasers and Amplifiers

- Double-clad fiber enables greater amounts of pump power to be coupled into the fiber
 - Spatial multiplexing
 - Multimode pump diodes can be used
 - Laser diode bars can be used
 - Fiber pigtailed pumps bring more flexibility to the laser

•Separate optical fiber engine from pump module

- Larger fiber cores can be used because of larger fiber diameter
 - Reduce non-linear effects
 - More power can be extracted thus more power at the output

•kW CW fiber laser and Multi-kW pulsed fiber laser

Double-Clad fibers

3 types of secondary claddings

- Fluorine-doped silica secondary cladding
 - Numerical aperture 0.22 to 0.3
 - Iimited coupling efficiency
- Fluoro-acrylate doped secondary cladding
 - Numerical aperture 0.46
 - Cladding easily removed, most used DCF type
- All-glass Air-Clad DCF
 - Numerical aperture 0.6
 - Difficult to handle

- Secondary cladding are non-circular shaped to increase mode mixing and absorption
- Relay DCF is usually circular
- Standard secondary cladding diameters
 - 125 μm, 200 μm, 250 μm and 400 μm

Multimode pump fibers

Fluorine-doped silica cladding

Numerical aperture : 0.12, 0.15, 0.22

Core/Cladding diameters

- 100 μm/ 125 μm
- 105 μm/ 125 μm
- 200 μm/220 μm
- 400 μm/440μm

Fluoro-acrylate doped cladding

- Numerical aperture : 0.46
- 125 µm core

Pumps

- Single-emitter pump into 105 µm core fibers
- Laser diode bars Into 105 μm, 200 and 400 μm core fibers

fiber bundle and output fiber

ITF Proprietary and Confidential Information

Tapered fiber bundle and brightness conservation

Design rule: Brightness conservation

In a fiber $NA = n_{co} \sin \theta_{c}$

- n_{co} is the index of refraction of the core
- \bullet And θ_c is the critical angle

For a ray in a tapered multimode fiber

• ϕ is the diameter of the fiber and θ is the axial angle of the mode

 $\phi_i \sin \theta_i = \phi_0 \sin \theta_0$

For a bundle, low loss is achieved when

 $\phi_{b} \mathbf{NA}_{b} \leq \phi_{o} \mathbf{NA}_{o}$

- ϕ_{b} is the diameter of the fiber bundle before tapering,
- NA_b is the largest numerical aperture of the input fibers or the numerical aperture filled by the pump lasers,
- ϕ_o is the core diameter of the output fiber and
- NA_o is the numerical aperture of the output fiber.

Input fibers\ Output fiber	125 μm DCF, NA =0.46	$\begin{array}{l} 250 \ \mu m \ DCF, \\ NA = 0.46 \end{array}$	400 μm DCF, NA =0.46
105 / 125 μm, NA = 0.15	7 x 1	19 x 1	61 x 1
105 / 125 μm, NA = 0.22	4 x 1	7 x 1	37 x 1
200 / 220 μm, NA = 0.22	1 x 1	4 x 1	7 x 1
400 / 440 μm, NA = 0.22	N/A	1 x 1	3 x 1

Assuming fully filled pump fibers

Double clad fiber components for fiber lasers

Fiber component can replace bulk optic component

- Monolithic fiber structure
- Fused component and splices cannot be misaligned

Different method for coupling pump power into DCF

- Side coupling
 - Notch coupling (Naval research lab/Keopsys)
 - Angle coupling
 - Fused taper side coupling (IPG)
 - Fused coupler side coupling (JDSU)
 - Co-linear coupling (GT-WAVE, SPI)
- End pumping
 - Tapered bundle end pumping with signal feed-through (OFS, JDSU)
 - Large core fiber end pumping (ITF)
- Disclaimer: Technologies presented are based on published patents not necessarily on what the companies are actually using.

Two parameters

- Coupling efficiency : Coupled pump power into DCF/initial pump power
- Brightness efficiency : $(\Sigma(\phi_i^2)) * NA_i^2 / (\phi_o NA_o)^2$

Notch Coupling

US patent #6,731,837, Goldberg et al.

Coupling efficiency 100% if

beam spot size < notch area and</p>

•
$$NA_i = NA_o$$

Brightness efficiency <25% if NA_i = NA_o

Angle coupling

Coupling efficiency 100% if

- $NA_i + \alpha < NA_o$
- $\phi_i < \phi_o$

Brightness efficiency

Very poor

Tapered pump fiber side-coupling

- US patent 5,999,673, Gapontsev et al.
- 🧶 (1+1) x1
- Coupling efficiency 100% if
 - $NA_i < Na_o^* \phi_i / (\phi_i + \phi_o)$

Brightness efficiency = $(NA_o/NA_i * \phi_i/(\phi_i + \phi_o))^2$

Fused coupler

17

- US patent 6,434,295, MacCormack et al.
- US patent 6,826,335, Grudinin et al.
- (1+1) x (1+1), (1+2) x (1+2)

FIG._1A

- Coupling ratio ($\Sigma \phi_0^2$)/ ($\Sigma \phi^2$)
- Brightness efficiency = coupling ratio * (NA_i / NA_o)²

GT-wave

- US patent 6,826,335, Grudinin et al.
- (2+1) x 1 structure
- Coupling efficiency tends to 100%
- Brightness efficiency =1/3 * (NA_i / NA_o)²

Tapered bundle end pumping with signal feed-through

- US patent 5,864,644, DiGiovanni et al.
- US patent 6,434,302, Fidric et AI.
- (6+1) x 1 structure
- Coupling efficiency 100% if
 - $\phi_{b} \mathbf{NA}_{b} \leq \phi_{o} \mathbf{Na}_{o}$
- Brightness efficiency = 6/7 * ($\phi_b NA_b / \phi_o Na_o$)²

Large core fiber end pumping

Figure 3

- US Patent pending, Gonthier et al.
- (N+1) x 1, with N = 4 to 12 and more
- Coupling efficiency 100% if
 - $\phi_{b} \mathbf{NA}_{b} \leq \phi_{o} \mathbf{Na}_{o}$
 - Brightness efficiency = N $(\phi_i^2 NA_b / \phi_o Na_o)^2$

(N+1) x 1 Multimode fused fiber combiner (cont)

Configu -ration	Input pump	Signal fiber	Double-clad fiber	Fundamental	Deformation due
(6+1)x1	200/220 μm, NA= 0.22	20/125 μm, NA = 0.06	$\frac{20/400 \ \mu\text{m},}{\text{NA} = 0.06/0.46}$		
(6+1)x1	105/125 μm, NA= 0.22	20/125 μm, NA = 0.11	20/200 μm, NA = 0.11/0.46	0	

Mode adaptor integrated into (N+1) x 1 combiners

Configu- ration	Pump fiber	Fiber signal	Double-clad fiber	Fundamental mode	Deformation due to waveguide structure
(6+1)x1	105/125 μm, NA = 0.22	Puremode 1060	20/400 0.06		
(6+1)x1	200/220 μm, NA = 0.22	Puremode 1060	20/400 0.06	0	0

(9+1) cleaved fiber bundle

ITF Proprietary and Confidential Information

Coupling into 125 µm DCF

DCF diameter (µm)		125								77
Pump parameters										
diameter (µm)	·	105		105		105		200		400
NA		0.15		0.22		0.22		0.22		0.22
power (W)		5		5.5		30		50		400
	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)
Fused taper *	2	9.5	1	5.2	1	28.5	1	13.1	1	95.0
fused coupler*	4	14.6	1	4.5	1	24.5	1	30.0	1	113.7
Co-linear**,+	14	66.5	8	41.8	8	228.0	2	95.0	2	500.0
Tapered bundle	7	33.3	4	20.9	4	114.0	1	47.5	1	250.0
Tapered bundle w feed-through**	6	28.5	6	22.5	6	122.7	6	51.1	6	102.3
Large core bundle**	6	28.5	4	20.9	4	114.0	4	47.5	4	95.0
* several can be put in series										
** two can be used										
+ Double the power, but three time	es the length	1								

- Red color indicates coupling schemes to lossy to be of practical use
- Fused couplers are less efficient than fused tapers
- Bundle with feed-through are less efficient than bundle
- Large pump fiber cannot be used if DCF is too small
- There is an advantage to use low NA pumps, even if they are less powerful

Coupling into 125 µm DCF

All-Fiber

Coupling into 250 µm DCF

F diameter (µm) mp parameters		250								100
ameter (µm)		105		105		105		200		400
· · · · · · · · · · · · · · · · · · ·		0.15		0.22		0.22		0.22		0.22
wer (W)		5		5.5		30		50		400
	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)
sed taper *	7	33.3	4	20.9	4	114.0	1	47.5	1	380.0
sed coupler*	19	89.6	10	31.8	10	173.2	4	126.1	1	252.3
-linear**,+	74	351.5	38	198.6	38	1083.0	8	380.0	2	760.0
pered bundle	37	175.8	19	99.3	19	541.5	4	190.0	1	380.0
pered bundle w feed-through**	36	171.0	18	94.1	18	513.0	6	142.5	6	570.0
rge core bundle**	36	171.0	18	94.1	18	513.0	4	190.0	4	380.0
everal can be put in series two can be used										
ge core bundle** several can be put in series two can be used Double the power, but three time:	36	<u>171.0</u>	18	94.1	18	513.0	4	190.0		4

- Orange indicates number of pump fiber to large to be practical
- Large increase in pump coupling vs 125 µm DCF
- Power advantage of low NA pump reduced but still there but number of pump is too large and will be to expensive
 - This makes bar pumping more attractive

Coupling into 250 µm DCF

Maximum Coupled power 250 µm DCF

Coupling into 400 µm DCF

DCF diameter (µm) Pump parameters		400								
diameter (µm)	·′	105		105		105		200		400
NA	' <u>'</u>	0.15		0.22		0.22		0.22		0.22
power (W)	'	5		5.5		30		50		400
	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)	# pumps	Power (W)
Fused taper *	19	90.3	7	36.6	7	199.5	4	190.0	1	380.0
fused coupler*	37	175.0	19	99.3	19	541.5	4	162.8	1	325.5
Co-linear**,+	122	579.5	74	386.7	74	2109.0	20	950.0	6	2280.0
Tapered bundle	61	289.8	37	193.3	37	1054.5	10	475.0	3	1140.0
Tapered bundle w feed-through**	60	285.0	36	188.1	36	1026.0	6	285.0	6	570.0
Large core bundle**	60	285.0	36	188.1	36	1026.0	9	427.5	4	1216.0
* several can be put in series										
** two can be used										
+ Double the power, but three time	s the lengt	1 I								

Brown indicates component is too large (1.2 mm fiber)

Kilowatt pumping with possible single component

Coupling into 400 µm DCF

In all-fiber component, reliability depends more on power dissipation capacity then on power handling

- Low loss in essential
- Packaging with good heat dissipation will enable higher power operation
- Longer term reliability for components
- Power handling in laser operation

High-power test

Input power, W

Maximum power achieved was limited by the test source

At 195 W sample shows

- No increase in insertion loss
- No measurable temperature increase of the package (passive heatsinking)
- Sample efficiently dissipated 20 W of power
- With lower loss (<0.1 dB), ITF's All-Fiber[®] components should handle greater than 700 W.

Combiner Reliability: High Power Test at 123W

Fig. 11 Output power and Transmission of a Multi-Mode Combiner during a high power test at 123W

TFBs, latest long time aging test at 100W (Jenoptik, Photonics West 2005)

Short term stability test of single mode fiber laser

Corning 1060 fiber

Conclusion

- Number of techniques times number of fiber types = Large number of possibilities
- However, not all techniques are available on the open market
 - Commercially available
 - Fiber bundles with or without feed-through
 - Side couplers
- Amplifier design must take into account other parameter such as gain fiber length to select proper components
- High power handling required for multi-100 watt class components
 - ITF components can be used in multi-100 watt applications

In development at ITF

- High power package for kilowatt class component
- Tapered fiber bundles with large core PM fibers

