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ABSTRACT   

We present a robust post-processing technique to extract the polarization dependant frequency (PDF) and Polarization 
dependant loss (PDL) from stokes measurements of differential phase shift keying (DPSK) demodulators. The present 
method is based on sine-fitting on transmissions. It evaluates PDF and PDL from sinus parameters (phase, amplitude and 
amplitude offset) through a Müller matrix analysis.  
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1. INTRODUCTION  
The Differential Phase Shift Keying (DPSK) demodulator is based on a Mach-Zehnder (MZ) interferometer. That 
interferometer consists of splitting light in two branches, delaying a branch and recombining. The optical phase 
retardation between branches of a MZ interferometer being proportional to the frequency of the optical wave, the 
transmission spectrum exhibits a sinusoidal response.  

However, the MZ response can be different depending on the polarization of the incoming light. Although this impacts 
several parameters, more interest is put on the Polarization Dependant Frequency (PDF) and in a lesser extent, the 
Polarization Dependant Losses (PDL). The PDF measurement is hard to obtain directly or is obtained trough a yet 
unclear post-processing of the Stokes measurements. The purpose of this document is to clarify how PDF can be 
efficiently retrieved from Stokes measurements. 

In the following document, DPSK demodulators will be modeled as a sinus with few parameters to measure and to fit. 
The Stokes measurements and Müller analysis will then be presented in a context of a MZ interferometer. A post-
processing scheme is derived from these measurements as an extension of a widely spread PDL post-processing 
technique. 

 

2. MODELING OF A DPSK TRANSMISSION 
DPSK demodulators are delay line interferometers (DLI). An example of transmission spectrum of DPSK 66.7 GHz is 
shown in Figure 1 over the 1460–1580 nm range. 

 



 
 

 
 

Tr
an

sm
is

si
on

 sp
ec

tru
m

wavelength / nm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1460 1480 1500 1520 1540 1560 1580

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1520 1520.5 1521 1521.5 1522 1522.5 1523 1523.5 1524 1524.5 1525

 
Figure 1 : Experimental transmission spectrum for a given polarization  

Fitting the transmission using a single sine wave leads to very low residues (experimental minus fitted spectra). 
Transmissions Ti over the 1460–1580 nm range have been fitted using the simple expression: 
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ν is the optical frequency, FSR is the free spectral range (the period of the interferometer), ηi is the amplitude of the 
modulation, ϕi is the phase at null frequency, and εi is a small offset, the lowest transmission level of the interferometer 
related to input polarization i.  

It is observed in Figure 1 that the transmission maximum is not constant throughout the entire wavelength range. This 
exemplifies the slow variation of the sine wave produced by the device with the wavelength, namely: amplitude (Ai), 
phase (ϕi) and offset (εi) slowly vary with wavelength. Taking into account the slow variations of the parameters in eq. 
2.1.1 with wavelength, discrepancies between sine fitting and experimental data can be reduced by more than a factor of 
10. 

From this we conclude that: 

- DLI outputs are true sine functions of frequency; 

- The FSR is almost independent of the input polarization (and of the output port) 

- The DPSK transmission can be represented by a complex number of amplitude ηi and phase ϕi: ; ij
j e ϕ×η



 
 

 
 

Variation of ϕi with the polarization is due to PDF and variation of ηi and εi are due to PDL. Both are evaluated using 
Stokes-Müller method. 

 

3. PDF AND PDL 
This section will cover all the analysis leading to PDF post-processing. Starting with definition of Stokes measurements 
in DPSK demodulator, the m1,j are then evaluated. A discussion follows on the meaning of these elements. The PDF and 
PDL calculations are presented at the end of the section. 

3.1 Stokes vector and Müller matrix 

The Stokes vector S = (S0, S1, S2, S3) completely describes the power and polarization state of an optical wave (ref. 
2). Each element of the vector is based on measured power levels. S0 is the total intensity. S1 describes the amount of 
linear horizontal (S1>0) or vertical polarization (S1<0). S2 describes the amount of linear +45° (S2>0) or -45° (S2<0) 
polarization, and S3 describes the amount of right-hand (S3>0) or left-hand circular (S3<0) polarization (refs. 1, 2). 
Using the Müller matrix, the output vector of a device under test is given by: 

 ininininout SmSmSmSmS 32100 14131211 +++=  (3.1.1) 

Where the m1,j are the first row elements of the Müller matrix. The first step is dedicated to get the characteristics of the 
transmission for each of the four different input vectors. 

The four polarizations that build up the Stokes input vector are given in Table 1. The phases at null frequency of the 
respective transmitted signals are evaluated using a sine fitting procedure following equation 2.1.1. The parameters 
obtained are defined in following equation: 
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Table 1: Phase shift and polarization states input. 

 Polarization 
description 

Phase and amplitude of the 
transmission Phase shift vs 

2
21

11
ϕ+ϕ

=ϕ  

Pa

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
1
1

 ⎪⎩

⎪
⎨

⎧

η

ϕ−ϕ
+ϕ=ϕ

1

21
111 2  2

21 ϕ−ϕ
 



 
 

 
 

 Polarization 
description 

Phase and amplitude of the 
transmission Phase shift vs 

2
21

11
ϕ+ϕ

=ϕ  

Pb

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

0
0

1
1

 ⎪⎩

⎪
⎨

⎧

η

ϕ−ϕ
−ϕ=ϕ

2

21
112 2  2

21 ϕ−ϕ
−  

Pc

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
1
0
1

 
⎪
⎩

⎪
⎨

⎧

η

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−ϕ
−ϕ+ϕ=ϕ

3

21
3113 2  2

21
3

ϕ+ϕ
−ϕ  

Pd

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
0
1

 
⎪
⎩

⎪
⎨

⎧

η

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−ϕ
−ϕ+ϕ=ϕ

4

21
4114 2  2

21
4

ϕ+ϕ
−ϕ  

 

3.2 Evaluation of the m1,j elements 

From eq. 3.1.2 one easily gets: 
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And 
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Further, from eq. 3.1.2, the third element of the Muller 1st row can be written as follows: 
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Where:  
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One can see that ψ  is a 0th order phase term and α  is a 0th order amplitude term, while χ  and γ  are of the 1st order 
phase and amplitude respectively. 

And finally the last element being : 
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where  
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One can see that ρ  and β  are of the 0th order in phase and amplitude respectively, while κ  and µ are of the 1st order 
in phase and amplitude respectively. 

Signification of the terms of the m1,j elements 

 Looking at the m1,j elements, on can get physical insight of the PDL and PDF contributions trough the Müller 
analysis. Devices to be tested being low PDL and low PDF components, the following conditions are satisfied: 
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Eq. 3.2.1 can be approximated by: 
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The 1st term in eq. 3.2.6 is of 0th order in amplitude. The second term is of 2nd order (one order in the phase difference × 
one in the amplitude difference). It therefore can be neglected. Hence, m11 is a true sine wave. 

From eq. 3.2.2 one gets: 
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The 1st term in eq. 3.2.7 is a 1st order one (1st order in the phase difference × 0th in the amplitude difference). This term is 
a cosine: it is π/2 shifted compared to m11. It therefore is a PDF contributor (it will slightly modify the device phase at 
null frequency). The 2nd term in eq. 3.2.7 is a 1st order one (1st in the amplitude difference × 0th order in the phase 
difference). This term is a sine: it is in phase with m11. It therefore is a PDL contributor (it will not affect the device 
phase at null frequency). Last term in eq. 3.2.7 is a negligible offset. 

Approximation of eq. 3.2.3 can be written as follows: 
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The 1st term in eq. 3.2.8 is of 1st order. This term is a cosine: it is ~π/2 shifted compared to m11. It therefore is a PDF 
contributor. 

The 2nd term in eq. 3.2.8 is also of the 1st order. This term is a sine: it is nearly in phase with m11. It therefore is a PDL 
contributor. This term also contributes to the offset of m13.  

The two next terms are 2nd order ones. These can therefore be neglected. Last term in eq. 3.2.8 is a negligible offset. 

Finally, an approximation of eq. 3.2.4 is given by: 
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Similarly to m13, the 1st term in eq. 3.2.9 is of the 1st order. This term is a cosine: it is ~π/2 shifted compared to m11. It 
therefore is a PDF contributor. 

The 2nd term in eq. 3.2.9 is of the 1st order. This term is a sine: it is nearly in phase with m11. It therefore is a PDL 
contributor. This term also contributes to the offset of m14.  

The two next terms are 2nd order one. These can therefore be neglected. Last term in eq. 3.2.9 is a negligible offset. 

Above discussion permits to separate the elements that contribute to the device PDF from those that contribute to its 
PDL.  

3.3 Evaluation of the extreme transmission along the Poincaré sphere 

According to the Stokes vector polarization description and the Müller transfer matrix, the device transmission under 
totally polarized input power is given by (ref. 1): 
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 in which xi are the polarization components on the Poincaré sphere. 

We are looking at the phase and amplitude of the comb that the transmission spectrum produces. Considering the terms 
of the m1j (j = 2, 3, 4) that are shifted from that of m11 by ± π/2 (see eq. 3.2.6 to 3.2.9) and since their respective 
amplitudes η1j are one order of magnitude lower than that of m11, the phase shift (from the m11 phase) can simply be 
evaluated by the following approximation: 

 ( ) 14313212111 tan η+η+η=ϕ∆η xxx  (3.3.2) 

The problem is now to look for maximum and minimum of ∆ϕ that will represent the maximum phase shift under the 
input polarization possible variation. This problem is simply dealt with using Lagrange multipliers. We built the 
function: 
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That solves into 
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From eq. 3.3.5 and the condition  we get: 12
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Finally: 
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Finally, we get the PDF value corresponding to the maximum span of the transmission phase at null frequency: 
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Replacing the η1j in eq. 3.3.8 by their values from eq. 3.2.7 to 3.2.9 (the amplitudes of the cosine terms at the 1st order) 
one gets: 
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Similarly, the maximum amplitude variation in phase with m11 due to input polarization changes is obtained by replacing 
the η1j in eq. 3.3.7 by their values from eq. 3.2.7 to 3.2.9 (the amplitudes of the sine terms at the 1st order). Therefore: 
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Therefore: 
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Equations 3.3.9 and 3.3.11 permit to properly evaluate the two different DPSK transmission dependences with 
polarization that come from (i) true PDL, that is true loss due to polarization dependence, and (ii) true PDF, that is true 
variation of the interferometer phase due to polarization dependence. 

4. CONCLUSION 
Until now, the most common technique consisted in computing PDL data by using Müller analysis. PDF was then 
obtained basically by comparing wavelength at a given signal amplitude for orthogonal polarizations. This technique 
works well when PDF is of the order of several % of FSR, however, it becomes significantly less precise when PDF is 
less than 1% of FSR since it suffers from coupling between PDL and PDF along with different loss mechanisms. In this 
paper, we presented a technique that separates phase measurements from amplitude measurements resulting in a more 
reliable post-processing technique for retreiving PDF. 

Results confirm that this measurement technique is more precise on a wider range (actually no foreseen limits on the 
domain of validity) of PDL and PDF on tested demodulators. Consequently, we believe it should be considered as a 
standard method to measure these quantities in MZ interferometers. 
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