3SPTechnologies Source of Smart Solutions

Active Components Pump Laser Modules

Key Features

Up to 330 mW operating power

Extended operating temperature range (-5 °C to +75 °C)

Fiber Bragg Grating (FBG) on SMF pigtail

Total Power Consumption: 3.5 W max @ 330 mW Pop

Telcordia GR-468-CORE qualified

RoHS 6/6

Applications

Erbium-Doped Fiber Amplifier

Multi pumping architectures

Sensors

For more Info

Please contact us at: Europe & Asia: +33 169 805 750 North America: +1 514 748 4848, Ext 4374 customerservice@3spgroup.com

1999PLM

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

The 1999PLM is a new generation of 980 nm terrestrial pump modules powered by an in-house chip technology.

Low Profile, 14-pin butterfly modules are available with an operating power up to 330 mW.

They incorporate a thermoelectric cooler (TEC), a precision NTC thermistor and a back-facet monitoring photodiode.

The wavelength is "locked" utilizing a fiber Bragg grating (FBG) located in a Single Mode HI1060 Fiber (SMF) pigtail.

The module meets Telcordia[™] GR-468-Core requirements for hermetic 980 nm pump modules.

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled **Pump Laser Module**

3SPTechnologies Source of Smart Solutions

ELECTRO-OPTICAL CHARACTERISTICS

The following parameters are specified BOL for a T_{submount} = 25 °C, T_{case} = -5 °C to 75 °C, V_{BFM} = -5 V and -50 dB max back-reflection unless otherwise stated.

Parameters		Conditions	Symbol	Min	Тур	Max	Unit
PUMP LASER		^					
Threshold current	(1)		I _{th}	-	45	60	mA
Nominal operating power			Pnom	150	-	-	mW
Kink free power	(2)		Pkink	1.1 x P _{nom}	-	-	mW
Forward current	(3)	P _{nom} = 150 mW P _{nom} = 200 mW P _{nom} = 250 mW P _{nom} = 300 mW	I _{nom}		260 330 400 470	290 365 440 515	mA
Forward voltage		P _{nom} = 330 mW @ 330 mW	Vnom	-	520	570 2.0	V
Peak wavelength tolerance		@ T _{case} = T _{FBG} = 25 °C 0.1 x P _{nom} to P _{nom}	Δλp	-	-	±0.5	nm
Wavelength tuning vs temperature (T _{grating} = -5 to 75 °C)		0.1 x P _{nom} to P _{nom}	Δλρ / ΔΤ	-	0.01	0.02	nm / °C
Spectral width @ -3 dB		0.1 x P _{nom} to P _{nom}	$\Delta\lambda_{\sf FWHM}$	-	-	1.0	nm
Power in band	(4)	Pnom	Pband	90	-	-	%
Optical power stability		Peak to peak, 10 Hz-50 kHz, 60 sec, P _{nom}	ΔΡ	-	<1	2	%
Power consumption, EOL		P _{nom} = 330 mW		-	-	3.5	W
MONITOR DIODE		1					
Responsivity			IBFM / P	0.5	-	10	µA / mW
Dark current		Vr = 5 V	IBFM_dark	-	50	100	nA
THERMO-ELECTRICAL COOLER							
Cooling capacity			ΔT_{TEC}	50	-	-	°C
TEC voltage (EOL)		T _{case} = 75 °C, 1.1 x I _{nom}	Vtec, eol	-	-	2.1	V
TEC current (EOL)			I _{TEC} , EOL	-	-	1.4	A
TEC Power consumption			PTEC	-	-	2.9	W
THERMISTOR							
Resistance		25 °C	R _{th}	9.5	10	10.5	kΩ
Constant			В	3600	-	4200	K

(1) I_{th} is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 mW and 50 mW (2) A kink is detected when the local slope dP/dI is below S_{min} or above S_{max} . S_{min} is defined as $0.5xS_{avg}$ and S_{max} is defined as $1.5xS_{avg}$

(3) EOL forward current I(EOL)= 1.1x I(BOL)

(4) P_{band} is defined as the power within the band $\lambda p \pm 1.5$ nm vs the total output power

2

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

3SPTechnologies Source of Smart Solutions

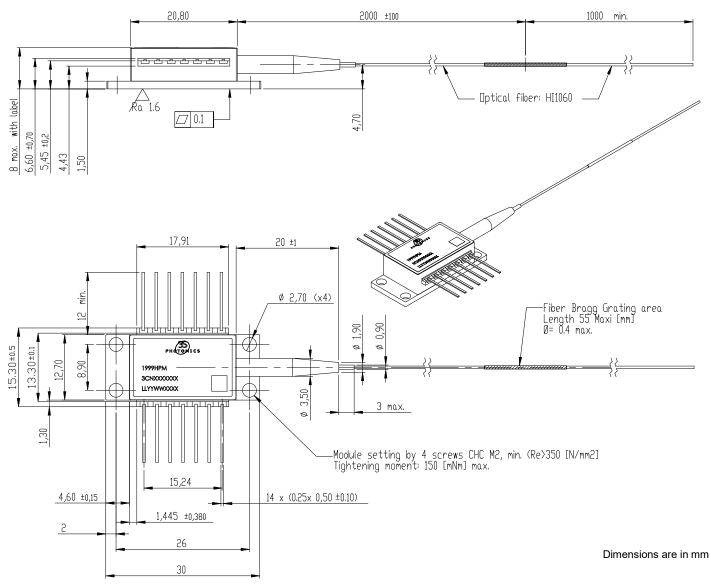
ABSOLUTE MAXIMUM RATINGS

Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000 h)	T _{stg}	-40	85	°C
Operating temperature (T _{submount} = 25 °C)	Top	-5	75	°C
Lead soldering temperature (10 s maximum)		-	280	°C
LD forward drive current (10 s maximum)	I _{f_max}	-	660	mA
LD reverse voltage	Vr_max	-	2.0	V
PD reverse voltage	V _{PD_max}	-	15	V
PD forward current	I _{PD_max}	-	10	mA
TEC voltage	V _{TEC_C_max}	-	3.3	V
TEC current	I _{TEC_C_max}	-	2.4	A
ESD* damage	V _{ESD}	-	1000	V
Mounting torque		-	150	mN.m
Fiber bend radius		25	-	mm
Axial pull force (1x1min)		-	5	N

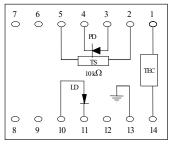
* Human Body model, C = 100 pF, R = 1.5 k Ω

FIBER PIGTAIL CHARACTERISTICS


Parameter	Note	Min	Тур	Max	Unit
Fiber type		HI1060 [™] or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		-	-	400	μm
FBG position	Module to center of FBG	-	2	-	m
Loose tube buffer diameter		885	-	915	μm
Fiber proof test level		200	-	-	kpsi
Grating proof test level		150	-	-	kpsi
Pigtail termination	Bare fiber				

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

3SPTechnologies Source of Smart Solutions



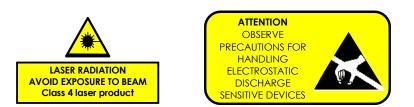
MECHANICAL DETAILS

PIN ASSIGNEMENT

N°	Description	N°	Description
1	TEC (+)	8	No connect
2	Thermistor	9	No connect
3	Monitor PD Anode	10	Laser Anode (+)
4	Monitor PD Cathode	11	Laser Cathode (-)
5	Thermistor	12	No connect
6	No connect	13	Ground
7	No connect	14	TEC (-)

Totally floating pin-out

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module



LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

HANDLING

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the pump laser module. Caution! Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

APPLICATION NOTE

In order to prevent any mishandling, misuse, neglect or accident, it is highly recommended to read and follow the instructions detailed in the application note:

RCL IMA APN 000 00007 "Handling, Mounting, Testing and Operating Cooled 14-pin Butterfly Laser Pumps"

ORDERING INFORMATION

1999PLM PUMP PRODUCT FAMILY

SMF pigtail	λ _p = 974.5 nm, T= 25 °C	λ _p = 976.0 nm, T= 25 °C		
Nominal Power	Part Number	Part Number		
150 mW	3CN01174AL	3CN01343AL		
200 mW	3CN01174BA	3CN01343BA		
250 mW	3CN01174BL	3CN01343BL		
300 mW	3CN01174CA	3CN01343CA		
330 mW	3CN01174CG	3CN01343CG		

3SP Technologies can also develop custom products to meet a wide range of technical requirements. Please contact your Sales Manager for details.

365 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

3SPTechnologies Source of Smart Solutions

CONTACT INFORMATION

Please contact us at: Europe & Asia: +33 169 805 750 North America: +1 514 748 4848, Ext 4374 customerservice@3spgroup.com www.3sptechnologies.com

IMPORTANT NOTICE

Information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract.

Information is subject to change without notice.

©2019 3SP Technologies S.A.S.

